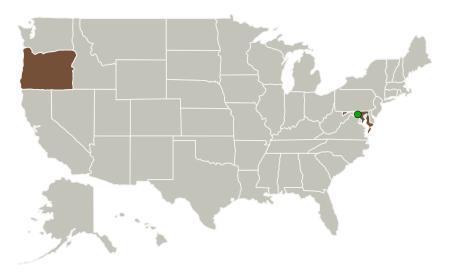
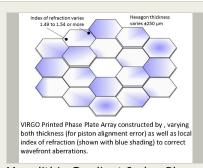
Monolithic Gradient Index Phase Plate Array, Phase I



Completed Technology Project (2014 - 2014)


Project Introduction

The "piston errors" and aberrations of the mirror segments used in large telescopes, are typically measured with on-board optical instruments, usually a dispersed Hartman sensor (DHS) and/or dispersed fringe sensor (DFS). Calibrating and testing of the wavefront sensors are typically performed using custom-built fused silica phase plate arrays. The manufacture and assembly of each custom phase plate array is time-intensive and expensive. Proposed is a gradient index (GI) phase plate array (PPA), which integrates the corrections of the DHS, an intermediate smoothing phase plate, and the DFS. This reduces the number of phase plates required, from three to one, and allows for the PPA t be used in the pupil plane, allowing for more precise calibration. The monolithic construction of the innovation significantly reduces development time and cost.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Voxtel, Inc.	Lead Organization	Industry	Beaverton, Oregon
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Monolithic Gradient Index Phase Plate Array Project Image

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Images	
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	
Target Destinations	

Small Business Innovation Research/Small Business Tech Transfer

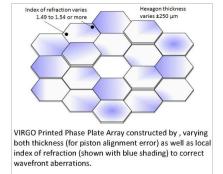
Monolithic Gradient Index Phase Plate Array, Phase I

Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations		
Maryland	Oregon	

Project Transitions

June 2014: Project Start



December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137591)

Images

Project Image

Monolithic Gradient Index Phase Plate Array Project Image (https://techport.nasa.gov/imag e/130218)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Voxtel, Inc.

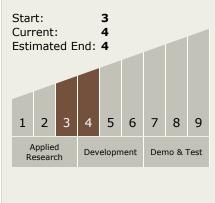
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Charles Dupuy

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Monolithic Gradient Index Phase Plate Array, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.4 Manufacturing
 - TX12.4.3 Electronics and Optics Manufacturing Process

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

